A self-organizing neural network for neuromuscular control
نویسندگان
چکیده
منابع مشابه
A Self-organizing Neural Network
We propose an unsupervised neural network model to learn and recall complex robot trajectories. Two cases are considered: (1) A single trajectory in which a particular arm configuration may occur more than once, and (2) trajectories sharing states with other ones – they are said to contain a shared state. Hence, ambiguities occur in both cases during recall of such trajectories. The proposed mo...
متن کاملSelf - organizing photorefractive neural network
The three dimensional display of images of moving objects has been a dream for many decades. Ranging from a study of microscopic objects, such as cells, in their natural environment to three dimensional movies, this dream has been realized under certain circumstances. Short recordings of moving objects have been made holo-graphically in silver halide films. But apart from limited sensitivity, t...
متن کاملA Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)
This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...
متن کاملA self-organizing HCMAC neural-network classifier
This paper presents a self-organizing hierarchical cerebellar model arithmetic computer (HCMAC) neural-network classifier, which contains a self-organizing input space module and an HCMAC neural network. The conventional CMAC can be viewed as a basis function network (BFN) with supervised learning, and performs well in terms of its fast learning speed and local generalization capability for app...
متن کاملA Self-Organizing Neural Fuzzy Inference Network
A self-organizing neural network is proposed which is inherently a fuzzy inference system with the capability of learning fuzzy rules from data. The learning strategy consists of two phases: a self-organizing clustering to establish the structure of the network as well as the initial values of its parameters and a supervised learning phase for optimal adjustment of these parameters. After learn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Neuroscience
سال: 2015
ISSN: 1471-2202
DOI: 10.1186/1471-2202-16-s1-p277